Aplicaciones de las formas de calor: conducción, convección, radiación.
Los mecanismos de transferencia de energía térmica son de tres tipos: • Conducción • Convección térmica • Radiación térmica
La transferencia de calor es el paso de energía térmica desde un cuerpo de mayor temperatura a otro de menor temperatura. La conducción de calor es un mecanismo de transferencia de energía térmica entre dos sistemas basado en el contacto directo de sus partículas sin flujo neto de materia y que tiende a igualar la temperatura dentro de un cuerpo y entre diferentes cuerpos en contacto por medio de ondas. La conducción del calor es muy reducida en el espacio vacío y es nula en el espacio vacío ideal, espacio sin energía. El principal parámetro dependiente del material que regula la conducción de calor en los materiales es la conductividad térmica, una propiedad física que mide la capacidad de conducción de calor o capacidad de una substancia de transferir el movimiento cinético de sus moléculas a sus propias moléculas adyacentes o a otras substancias con las que está en contacto. La inversa de la conductividad térmica es la resistividad térmica, que es la capacidad de los materiales para oponerse al paso del calor. a transferencia de energía o calor entre dos cuerpos diferentes por conducción o convección requiere el contacto directo de las moléculas de diferentes cuerpos, y se diferencian en que en la primera no hay movimiento macroscópico de materia mientras que en la segunda sí lo hay. Para la materia ordinaria la conducción y la convección son los mecanismos principales en la "materia fría", ya que la transferencia de energía térmica por radiación sólo representa una parte minúscula de la energía transferida. La transferencia de energía por radiación aumenta con la cuarta potencia de la temperatura (T4), siendo sólo una parte importante a partir de temperaturas superiores a varios miles de kelvin.
Ley de Fourier. Es la forma de transmitir el calor en cuerpos sólidos; se calienta un cuerpo, las moléculas que reciben directamente el calor aumentan su vibración y chocan con las que las rodean; estas a su vez hacen lo mismo con sus vecinas hasta que todas las moléculas del cuerpo se agitan, por esta razón, si el extremo de una varilla metálica se calienta con una flama, transcurre cierto tiempo hasta que el calor llega al otro extremo. El calor no se transmite con la misma facilidad por todos los cuerpos. Existen los denominados "buenos conductores del calor", que son aquellos materiales que permiten el paso del calor a través de ellos. Los "malos conductores o aislantes" son los que oponen mucha resistencia al paso de calor. Se denomina radiación térmica o radiación calorífica a la emitida por un cuerpo debido a su temperatura. Todos los cuerpos con temperatura superior a 0 K emiten radiación electromagnética, siendo su intensidad dependiente de la temperatura y de la longitud de onda considerada. En lo que respecta a la transferencia de calor la radiación relevante es la comprendida en el rango de longitudes de onda de 0,1µm a 100µm, abarcando por tanto parte de la región ultravioleta, la visible y la infrarroja del espectro electromagnético. La materia en un estado condensado (sólido o líquido) emite un espectro de radiación continuo. La frecuencia de onda emitida por radiación térmica es una densidad de probabilidad que depende solo de la temperatura. Los cuerpos negros emiten radiación térmica con el mismo espectro correspondiente a su temperatura, independientemente de los detalles de su composición. Para el caso de un cuerpo negro, la función de densidad de probabilidad de la frecuencia de onda emitida está dada por la ley de radiación térmica de Planck, la ley de Wien da la frecuencia de radiación emitida más probable y la ley de Stefan-Boltzmann da el total de energía emitida por unidad de tiempo y superficie emisora (esta energía depende de la cuarta potencia de la temperatura absoluta). A temperatura ambiente, vemos los cuerpos por la luz que reflejan, dado que por sí mismos no emiten luz. Si no se hace incidir luz sobre ellos, si no se los ilumina, no podemos verlos. A temperaturas más altas, vemos los cuerpos debido a la luz que emiten, pues en este caso son luminosos por sí mismos. Así, es posible determinar la temperatura de un cuerpo de acuerdo a su color, pues un cuerpo que es capaz de emitir luz se encuentra a altas temperaturas. La relación entre la temperatura de un cuerpo y el espectro de frecuencias de su radiación emitida se utiliza en los pirómetros ópticos.Bibliografía
www.quimica.unam.mx/IMG/pdf/1513TranferenciadeCalor.pdf
www.fisicanet.com.ar/.../ap08_transferencia_de_calor.php
Conservación de la energía
La energía mecánica total de un sistema es constante cuando actúan dentro del sistema sólo fuerzas conservativas. Asimismo podemos asociar una función energia potencial con cada fuerza conservativa. Por otra parte, la energia mecanica se pierde cuando esta presentes furzas no conservativas, como la friccíon.
En el estudio de la termodinámica encontraremos que la energia pude transformarse en energia interna del sistema. Por ejemplo, cuando un bloque desliza sobre una superficie rugoza, la energia mecanica perdida se transforma en energía interna almacenada temporalmente en el bloque y en la superficie, lo que se evidencia por un incremento mensurable en la temperatura del bloque. Veremos que en una escala submicroscópica esta energía interna está asociada a la vibracion de los atomos en torno a sus posiciones de eqilibrio. Tal movimiento atómico interno tiene energía cinetica y potencial. Por tanto, si a este incremento en la energía interna del sistema lo incluimos en nuetra expresión de la energía, la energia total se conserva.
Este es sólo un ejemplo de cómo podemos analizar un sistema aislado y encontrar siempre que su energía total no cambia, siempre que se tomen en cuenta todas las formas de energía. Esto significa que, la energía nunca pude crearse ni destruirse. La energía puede transformarse de una forma en otra, pero la energía total de un sistema aislado siempre es constante. Desde un punto de vista universal, podemos decir que la energía total del universo es constante. Si una parte del universo gana energía en alguna forma, otra parte debe perder una cantidad igual de energía. No se ha encontrado ninguna violacion a este principio.
Un objeto que se mantiene a cierta altura h sobre el suelo no tiene energia cinetica, pero, hay una energia potencial gravitacional asociada igual a mgh relativa al suelo si el campo gavitacional está incluido como parte del sistema. Si el objeto se suelta, cae hacia el piso, y conforme cae su velocidad y en consecuencia su energía cinetica aumenta,en tanto que la energía potencial disminuye. Si se ignoran los factores como la resistencia del aire, toda la energía potencial que el objeto pierde cuando cae aparece como energía cinetica. En otras palabras, las suma de las energías cineticas y potencial, conocida como energía mecanica E, permanece constante en el tiempo. Este es un ejemplo de la conservación de la energía. En el caso de un objeto en caida libre, este principio nos dice que cualquier aumento (o disminución) en la energía potencial se acompaña por una disminución (o aumento) igual en la energía cinética.
Puesto que la energía mecanica total E se define como la suma de las energías cinetica y potencial, podemos escribir.
E=K + U
Por consiguiente, es posible aplicar la conservacion de la energía en la forma Ei =Ef, o
Ki + Ui = Kf +Uf
www.quimica.unam.mx/IMG/pdf/1513TranferenciadeCalor.pdf
www.fisicanet.com.ar/.../ap08_transferencia_de_calor.php
Conservación de la energía
La energía mecánica total de un sistema es constante cuando actúan dentro del sistema sólo fuerzas conservativas. Asimismo podemos asociar una función energia potencial con cada fuerza conservativa. Por otra parte, la energia mecanica se pierde cuando esta presentes furzas no conservativas, como la friccíon.
En el estudio de la termodinámica encontraremos que la energia pude transformarse en energia interna del sistema. Por ejemplo, cuando un bloque desliza sobre una superficie rugoza, la energia mecanica perdida se transforma en energía interna almacenada temporalmente en el bloque y en la superficie, lo que se evidencia por un incremento mensurable en la temperatura del bloque. Veremos que en una escala submicroscópica esta energía interna está asociada a la vibracion de los atomos en torno a sus posiciones de eqilibrio. Tal movimiento atómico interno tiene energía cinetica y potencial. Por tanto, si a este incremento en la energía interna del sistema lo incluimos en nuetra expresión de la energía, la energia total se conserva.
Este es sólo un ejemplo de cómo podemos analizar un sistema aislado y encontrar siempre que su energía total no cambia, siempre que se tomen en cuenta todas las formas de energía. Esto significa que, la energía nunca pude crearse ni destruirse. La energía puede transformarse de una forma en otra, pero la energía total de un sistema aislado siempre es constante. Desde un punto de vista universal, podemos decir que la energía total del universo es constante. Si una parte del universo gana energía en alguna forma, otra parte debe perder una cantidad igual de energía. No se ha encontrado ninguna violacion a este principio.
Un objeto que se mantiene a cierta altura h sobre el suelo no tiene energia cinetica, pero, hay una energia potencial gravitacional asociada igual a mgh relativa al suelo si el campo gavitacional está incluido como parte del sistema. Si el objeto se suelta, cae hacia el piso, y conforme cae su velocidad y en consecuencia su energía cinetica aumenta,en tanto que la energía potencial disminuye. Si se ignoran los factores como la resistencia del aire, toda la energía potencial que el objeto pierde cuando cae aparece como energía cinetica. En otras palabras, las suma de las energías cineticas y potencial, conocida como energía mecanica E, permanece constante en el tiempo. Este es un ejemplo de la conservación de la energía. En el caso de un objeto en caida libre, este principio nos dice que cualquier aumento (o disminución) en la energía potencial se acompaña por una disminución (o aumento) igual en la energía cinética.
Puesto que la energía mecanica total E se define como la suma de las energías cinetica y potencial, podemos escribir.
Por consiguiente, es posible aplicar la conservacion de la energía en la forma Ei =Ef, o
Conservación de la energía
La energía mecánica total de un sistema es constante cuando actúan dentro del sistema sólo fuerzas conservativas. Asimismo podemos asociar una función energia potencial con cada fuerza conservativa. Por otra parte, la energia mecanica se pierde cuando esta presentes furzas no conservativas, como la friccíon.
En el estudio de la termodinámica encontraremos que la energia pude transformarse en energia interna del sistema. Por ejemplo, cuando un bloque desliza sobre una superficie rugoza, la energia mecanica perdida se transforma en energía interna almacenada temporalmente en el bloque y en la superficie, lo que se evidencia por un incremento mensurable en la temperatura del bloque. Veremos que en una escala submicroscópica esta energía interna está asociada a la vibracion de los atomos en torno a sus posiciones de eqilibrio. Tal movimiento atómico interno tiene energía cinetica y potencial. Por tanto, si a este incremento en la energía interna del sistema lo incluimos en nuetra expresión de la energía, la energia total se conserva.
Este es sólo un ejemplo de cómo podemos analizar un sistema aislado y encontrar siempre que su energía total no cambia, siempre que se tomen en cuenta todas las formas de energía. Esto significa que, la energía nunca pude crearse ni destruirse. La energía puede transformarse de una forma en otra, pero la energía total de un sistema aislado siempre es constante. Desde un punto de vista universal, podemos decir que la energía total del universo es constante. Si una parte del universo gana energía en alguna forma, otra parte debe perder una cantidad igual de energía. No se ha encontrado ninguna violacion a este principio.
Un objeto que se mantiene a cierta altura h sobre el suelo no tiene energia cinetica, pero, hay una energia potencial gravitacional asociada igual a mgh relativa al suelo si el campo gavitacional está incluido como parte del sistema. Si el objeto se suelta, cae hacia el piso, y conforme cae su velocidad y en consecuencia su energía cinetica aumenta,en tanto que la energía potencial disminuye. Si se ignoran los factores como la resistencia del aire, toda la energía potencial que el objeto pierde cuando cae aparece como energía cinetica. En otras palabras, las suma de las energías cineticas y potencial, conocida como energía mecanica E, permanece constante en el tiempo. Este es un ejemplo de la conservación de la energía. En el caso de un objeto en caida libre, este principio nos dice que cualquier aumento (o disminución) en la energía potencial se acompaña por una disminución (o aumento) igual en la energía cinética.
Puesto que la energía mecanica total E se define como la suma de las energías cinetica y potencial, podemos escribir.
E=K + U |
Por consiguiente, es posible aplicar la conservacion de la energía en la forma Ei =Ef, o
Ki + Ui = Kf +Uf |
No hay comentarios:
Publicar un comentario